Asymptotic Distributions for the Performance Analysis of Hypothesis Testing of Isolated-Point-Penalization Point Processes

نویسندگان

  • Majeed M. Hayat
  • John A. Gubner
  • Sajjad Abdullah
چکیده

The performance of the likelihood ratio test is considered for a many-point interaction point process featuring a reduced number of isolated points. Limit theorems are proved that establish the Poissonian asymptotic distribution of the loglikelihood function for point processes with the isolated-pointpenalization joint probability density function. The asymptotic distribution is used to approximate the detection probability associated with the likelihood ratio test. The approximation is compared to empirical results generated using Markov-chain Monte Carlo simulation. The reported results provide an efficient alternative method to simulation in assessing the performance of hypothesis testing for the point-process model considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing a Point Null Hypothesis against One-Sided for Non Regular and Exponential Families: The Reconcilability Condition to P-values and Posterior Probability

In this paper, the reconcilability between the P-value and the posterior probability in testing a point null hypothesis against the one-sided hypothesis is considered. Two essential families, non regular and exponential family of distributions, are studied. It was shown in a non regular family of distributions; in some cases, it is possible to find a prior distribution function under which P-va...

متن کامل

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point

The purpose of this paper is to study the higher order asymptotic distributions of the eigenvalues associated with a class of Sturm-Liouville problem with equation of the form w??=(?2f(x)?R(x)) (1), on [a,b, where ? is a real parameter and f(x) is a real valued function in C2(a,b which has a single zero (so called turning point) at point 0x=x and R(x) is a continuously differentiable function. ...

متن کامل

TESTING FOR “RANDOMNESS” IN SPATIAL POINT PATTERNS, USING TEST STATISTICS BASED ON ONE-DIMENSIONAL INTER-EVENT DISTANCES

To test for “randomness” in spatial point patterns, we propose two test statistics that are obtained by “reducing” two-dimensional point patterns to the one-dimensional one. Also the exact and asymptotic distribution of these statistics are drawn.

متن کامل

Improving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach

A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...

متن کامل

$G$-asymptotic contractions in metric spaces with a graph and fixed point results

In this paper, we discuss the existence and uniqueness of fixed points for $G$-asymptotic contractions in metric spaces endowed with a graph. The result given here is a new version of Kirk's fixed point theorem for asymptotic contractions in metric spaces endowed with a graph. The given result here is a generalization of fixed point theorem for asymptotic contraction from metric s paces to metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1999